Our Research is Your Success...

February 2013

Published in:

Journal of Prosthodontics

"Cement Selection for Implant-Supported Crowns Fabricated with Different Luting Space Settings"

Pinar Gultekin, DDS, PhD; B. Alper Gultekin, DDS, PhD; Murat Aydin & Serdar Yalcin
Purpose

To measure and compare the retentive strength of cements specifically formulated for luting restorations onto implant abutments and to investigate the effect of varying cement gap on retention strength of implant-supported crowns.

Materials and Methods

Standard titanium abutments were scanned by means of a 3D digital laser scanner. One hundred and sixty standard metal copings were designed by a Computer Aided Design/Computer Aided Manufacturing (CAD/CAM) system with two cement gap values (20 and 40 μm). The copings were cemented to the abutments using the following eight cements with one being the control, zinc oxide temporary cement, while the other seven were specifically formulated implant cements (n = 10): Premier Implant Cement, ImProv, Multilink Implant, EsTemp Implant, Cem-Implant, ImplaTemp, MIS Crown Set, and TempBond NE. The specimens were placed in 100% humidity for 24 hours, and subjected to a pull-out test using a universal testing machine at a 0.5 mm/min crosshead speed. The test results were analyzed with two-way ANOVA, one-way ANOVA, post hoc Tamhane’s T2, and student’s t-tests at a significance level of 0.05.

Results

Statistical analysis revealed significant differences in retention strength across the cement groups (p < 0.01). Resin-based cements showed significantly higher decementation loads than a noneugenol zinc oxide provisional cement (TempBond NE) (p < 0.01), with the highest tensile resistance seen with Multilink Implant, followed by Cem-Implant, MIS Crown Set, and TempBond NE. The specimens were placed in 100% humidity for 24 hours, and subjected to a pull-out test using a universal testing machine at a 0.5 mm/min crosshead speed. The test results were analyzed with two-way ANOVA, one-way ANOVA, post hoc Tamhane’s T2, and student’s t-tests at a significance level of 0.05.

Conclusion

Resin cements specifically formulated for implant-supported restorations demonstrated significant differences in retention strength. The ranking of cements presented in the study is meant to be an arbitrary guide for the clinician in deciding the appropriate cement selection for CAD/CAM-fabricated metal copings onto implant abutments with different luting space settings.